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Abstract—Post-processing visualization pipelines are tradi-
tionally used to gain insight from simulation data. However,
changes to the system architecture for high-performance com-
puting (HPC), dictated by the exascale goal, have limited the
applicability of post-processing visualization. As an alternative,
in-situ pipelines are proposed in order to enhance the knowl-
edge discovery process via “real-time” visualization. Quantitative
studies have already shown how in-situ visualization can improve
performance and reduce storage needs at the cost of scientific
exploration capabilities. However, to fully understand the trade-
off space, a head-to-head comparison of power and energy
(between the two types of visualization pipelines) is necessary.

Thus, in this work, we study the greenness (i.e., power, energy,
and energy efficiency) of the in-situ and the post-processing
visualization pipelines, using a proxy heat-transfer simulation
as an example. For a realistic I/O load, the in-situ pipeline
consumes 43% less energy than the post-processing pipeline.
Contrary to expectations, our findings also show that only 9%
of the total energy is saved by reducing off-chip data movement,
while the rest of the savings comes from reducing the system idle
time. This suggests an alternative set of optimization techniques
for reducing the power consumption of the traditional post-
processing pipeline.

I. INTRODUCTION

The computational demand of high-performance computing

(HPC) applications has brought major changes to the HPC

system architecture. As a result, it is now possible to run

simulations faster and get more accurate results. But, the recent

changes to the HPC systems solve just one part of the problem

- getting high quality data from simulations. What is arguably

more important, is the insight behind the data.

Scientists visualize the simulation data to understand a

complex physical phenomenon and solve real-world problems.

A typical visualization pipeline involves simulating a phe-

nomenon, and writing the simulation data to a disk. After the

simulation is complete, the data is sent to a rendering farm,

where it is visualized and interpreted to draw meaningful con-

clusions. This kind of pipeline, known as the post-processing

visualization pipeline, has been popular for a long time.

However, the changes dictated by the exascale goal has

affected the traditional post-processing visualization pipelines.

Faster processors have encouraged scientists to perform larger

simulations, producing more simulation data, which cannot

be handled by the slower I/O. Also, off-chip data movement

is now estimated to consume nearly hundred times as much

energy as on-chip movement [1]. This trend is concerning,

particularly for exascale simulations, as the U.S. Department

of Energy’s (DOE) goal is to support exascale systems un-

der a maximum power budget of 20 MW [2]. These trends,

combined, has resulted in a paradigm shift, away from post-

processing visualization.

To continue knowledge discovery via visualization, two ma-

jor challenges must to be addressed. First, the I/O bottleneck,

which affects the performance, should be overcome. Next,

the energy consumption of visualization pipelines should be

limited. In order to solve both these problems, researchers have

advocated in-situ data analytics and visualization, where the

data is processed/visualized alongside the simulation [3]. This

reduces the total amount of off-chip transfers, thereby avoiding

the I/O bottleneck and reducing the energy consumption. On

the flip side, scientists lose their ability to perform exploratory

analysis when they use in-situ techniques.

Researchers have studied several in-situ pipelines and have

found them to be better than post-processing pipelines, in

terms of storage requirements and performance. However,

to the best of our knowledge, there exists no studies that

quantitatively compares the power and energy consumption of

the two types of visualization pipelines. Improvements in per-

formance and reduction in storage requirements are assumed

to automatically translate into energy and power savings. We

seek to determine the magnitude of these savings, to fully

understand the advantages and the disadvantages of both the

pipelines. Our major contributions include the following:

• We provide a subsystem-level characterization of instan-

taneous power for in-situ and post-processing pipelines

using a proxy heat transfer application configured for

different I/O loads.

• We provide a direct comparison of the two pipelines,

in terms of the following metrics: performance, power,

energy consumption, and energy efficiency.

• We provide a breakdown of the energy savings from

the in-situ approach. We estimate the energy saved by

reducing data movement and by reducing idle time.

• We present a hypothetical case where an alternative set

of techniques applied to the post-processing pipeline will

consume nearly the same amount of energy as the in-situ

pipeline.

Our major findings are presented below. Please note that our

findings are based on the study of a single proxy application
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(b) In-situ pipeline

Fig. 2: Different types of visualization pipelines

C. Power Monitoring

In our experiments, we collect the power consumed by the

sub-components of the CPU through Intel’s Running Average

Power Limit (RAPL) interface [5]. RAPL was introduced in

Intel Sandy Bridge systems and provides power-limiting and

energy-monitoring capabilities. We make use of the energy-

monitoring feature to obtain a component’s power profile. The

underlying mechanism is described as follows. The RAPL

interface reads values from model-specific registers (MSR)

that are available in the hardware to monitor the system

activities of three components, namely PP0 (core), package

(processor), and DRAM (memory). Using a pre-validated

model, RAPL estimates the energy consumed by the three

components. The average power consumption for any time

slice is then computed from the corresponding energy esti-

mates. The estimated power values closely track true power

consumption, with an average error rate of less than 1% [5].

Of particular interest to us, is the power consumed by the

package and the DRAM.

III. RELATED WORK

In-situ visualization pipelines have been explored for a long

time. Originally conceived as a way to enable scientists to

monitor their simulations [6], in-situ visualization is now being

adopted to overcome performance bottlenecks associated with

large I/O operations. Numerous in-situ algorithms [7], [8],

applications [9]–[14], and frameworks [15], [16] have been

developed.

Tu et al. couple the simulation and visualization components

of a finite-element simulation of earthquake to overcome

scalability bottlenecks of traditional approaches [17]. Yu et

al. present an in-situ approach for jet-lifted combustion sim-

ulation [9]. Kariamadi et al. present an in-situ visualization

pipeline for electron fluid and kinetic ions simulations in

order to study the effect of solar wind on planetary bod-

ies [11]. Ahrens et al. present an image-based approach for

interactive in-situ visualization and apply it to MPAS-Ocean,

an unstructured-mesh simulation of oceans [12]. Many other

applications have their own in-situ implementations [13], [14].

With visualization-based approaches proving to be popular

for knowledge discovery, a number of visualization frame-

works such as ParaView [15], VisIT [16], DataSpaces [18],

and ADIOS [19] have been developed to quickly build in-

situ and post-processing visualization pipelines. Bennett et al.

combine in-situ and in-transit techniques using DataSpaces

and ADIOS frameworks to analyze data from S3D, a massively

parallel turbulent combustion simulation [10]. Biddiscombe et

al. use ParaView to build and evaluate their application [20].

All these studies have shown that in-situ approaches have

better I/O characteristics and performance. Techniques such

as data sampling [21], [22] and data triage [23] have been

developed to further improve the performance.

The metrics of interest in all the above studies are per-

formance/speed and storage size. Studies characterizing the

power and energy behavior of in-situ pipelines are limited.

Recently, Gamell et al. looked at the performance and energy

trade-offs of an in-situ combustion simulation in a large-

scale system [24]. Haldeman et al. explored the energy-

performance-quality tradeoffs of different data movement

strategies applicable to in-situ pipelines [25]. Gamell et al.

evaluated the energy and performance behaviors of in-situ

and in-transit pipelines on an NVRAM-based deep memory

hierarchy systems [26]. While the above works evaluate power

and energy consumption of in-situ pipelines, none of them

provide a direct comparison with post-processing pipelines to

help truly understand the energy, performance, and quality

trade-offs. In this work, we provide a direct comparison of

in-situ and post-processing pipelines in terms of performance,

power, energy, and energy efficiency using a proxy heat-

transfer simulation as an example.

IV. EXPERIMENTAL SETUP

In this section, we describe the hardware platform, the setup

for power monitoring, and the different configurations of the

application used in the study.

A. Hardware Platform

The system under test contains a dual-socket Intel Sandy

Bridge, where each socket contains an 8-core Intel Xeon E5-

2665 CPU (for a total of 16 cores in the node). It has 64 GB

of DDR3 memory, and a Seagate 500GB 7200rpm HDD. This

system runs Ubuntu 12.04 operating system with GNU/Linux

3.2.0-23 kernel. Other details of the hardware platform is given

in Table I.

B. Setup for Power Monitoring

The power measurements come from two different sources,

as shown in Figure 3. The system under test is connected to a

Wattsup Pro power meter which is connected to a power outlet.

The power meter provides system-wide power measurements
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TABLE I: Hardware specification

H/W Type H/W Detail

CPU 2x Intel Xeon E5-2665

CPU frequency 2.4 GHz

Last-level cache 20 MB

Memory 4x 16GB DDR3-1333

Memory size 64 GB

Hard disk Seagate 7200rpm disk

Storage size 500GB

Disk bandwidth 6.0 Gbps
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Fig. 3: Power monitoring setup

at a frequency of 1 Hz, i.e., one reading per second. A different

monitoring system collects the power measurements through a

USB interface and writes them to its local disk. This approach

minimizes the error in the application’s power profile as there

is no interference from a monitoring process and additional

data writes to the disk.

Simultaneously, the Intel Sandy Bridge CPU provides power

measurements for the components within the CPU via the

RAPL interface. This measurement cannot be monitored by

a different machine. To reduce the interference, we set the

monitoring resolution to 1 Hz even though RAPL provides

measurements at a frequency of over 1 KHz. At this low

resolution, the power consumption increases by 0.2 W on an

average, which is negligible. We collect the processor’s power

consumption (package power) and DRAM power consumption

using this interface. Power consumption of the rest of the

system, which includes the hard disk, network, motherboard,

and fans, is estimated by subtracting the processor power and

the DRAM power from the full-system power obtained using

the Wattsup Pro meter.

C. Application Configuration

Three different configurations of the proxy application were

used in our study. In all three cases, the application is run for

fifty iterations or timesteps. The grid size and the chunk size

were fixed at 128 KB for all the cases. For case study #1, I/O

operations and visualization is performed in every iteration.

For case study #2, it is done every alternate iteration, and

for case study #3, every eighth iteration. This experiment is

done to show the impact of I/O time on energy savings. In all

these cases, we perform a sync operation and drop the caches

between phases. This ensures that the data does not get cached

in memory and is actually written to the disk.

Case.Study.1 Case.Study.2 Case.Study.3
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Fig. 4: Percentage of execution time spent in simulation, disk

writes, disk reads, and visualization for the three cases

The break up of execution time for the three cases is

shown in Figure 4. The percentage of execution time spent

in simulation, write, read, visualization stages are 33%, 30%,

27%, and 10%, respectively, for case study #1. These values

are not very different from some real applications where over

70% of the total time is spent in I/O operations [27]. The

corresponding values for case study #2 are 50%, 22%, 21%,

and 7%; For case study #3, the values are 80%, 9%, 8%, and

3%.

V. RESULTS AND DISCUSSION

In this section, we first present the power profile of the

three different instances of the in-situ and the post-processing

pipelines for the proxy heat-transfer simulation. Then, we

characterize and compare the two pipelines in terms of the

following metrics: performance, power, energy, and energy

efficiency. Next, we provide a breakdown of the energy savings

and discuss its implications on the power optimization of

visualization pipelines.

A. Power Profiles

Figures 5a, 5c, 5e and Figures 5b, 5d, 5f show the power

profile of post-processing and in-situ pipelines, respectively,

for the three different application configurations presented in

Section IV-C. These graphs present the instantaneous power

consumed by the processor, the memory, and the full system

over time. Power profiles for the post-processing pipeline,

shown in Figures 5a, 5c, 5e, indicate the presence of distinct

power phases in the application. The first major phase, in

which the simulation is performed and the data is written to

the disk, consumes about 143 W of power on an average. The

second major phase, where the simulation data is read back

from the disk and visualized, consumes about 121 W of power

on an average. Since the average power consumed by the reads

and the writes is nearly the same as shown in Figure 6, we

can infer that the simulation phase consumes 22 W more power
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(a) Power profile of post-processing pipeline for case study #1
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(b) Power profile of in-situ pipeline for case study #1
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(c) Power profile of post-processing pipeline for case study #2
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(d) Power profile of in-situ pipeline for case study #2
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(e) Power profile of post-processing pipeline for case study #3
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(f) Power profile of in-situ pipeline for case study #3

Fig. 5: Power consumed by processor, memory, and full system over time for post-processing and in-situ pipelines

than the visualization phase. We also observe that there are no

distinct power phases for the in-situ pipeline.

Another observation from Figure 5 is that power consumed

by the memory subsystem is significantly lower than the

processor. Since the maximum power consumed by the disk

is also low (about 15 W), we expect that the energy overhead

from off-die data movement is not high. We quantitatively

demonstrate this in another set of experiments.

Performance, power, energy, and energy-efficiency values

are derived from the power profiles to compare the two types

of visualization pipeline.

B. Comparison of Pipelines

Figure 7 shows the execution time of the post-processing

and the in-situ pipelines for three different problem sizes. The

execution time of the in-situ pipelines were 92%, 52%, and

26% lower than the post-processing pipelines for the three

problem sizes, respectively.

Figure 8 and Figure 9 shows the average power and the

peak power consumption for the post-processing and in-situ

pipelines. There is no significant difference in the peak power,
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Fig. 6: Power profile of nnread and nnwrite stages

which is an important metric for power-capped systems. The

in-situ pipelines consumed 8%, 5%, and 3% more power on

an average.
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Fig. 7: Execution time of post-processing and in-situ pipelines
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Fig. 8: Average power of post-processing and in-situ pipelines

Energy consumption, which is the integral of instantaneous

power over time, is presented in Figure 10. Even though the

average power is higher for in-situ pipeline, its energy con-

sumption is 43%, 30%, and 18% lower than post-processing

pipeline. This is because of the significantly lower execution

time. The improvement in energy-efficiency from adapting an

in-situ pipeline varies from 22% to 72% depending on the time

spent in I/O operations (Figure 11).

Overall, the in-situ pipelines are greener than post-

processing pipelines. However, the advantages in energy ef-

ficiency tapers out as the time spent in I/O lowers. Since

many real-world simulation-visualization applications spend

a substantial amount of time doing disk I/O [27]–[29], their

energy-efficiency improvement will be significant if they adapt

in-situ pipelines.

C. Energy Savings Breakdown

Figure 10 showed that in-situ pipelines saves as much

as 43% of the total energy consumed by post-processing

pipeline. In this section, we show the breakdown in energy

savings, showing how much energy was saved by (i) reducing

data transfers, and (ii) reducing idle time by reducing data

transfers. In the first case, the energy savings come from the

dynamic component where the power is consumed due to data
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Fig. 9: Peak power of post-processing and in-situ pipelines
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Fig. 10: Energy consumption of post-processing and in-situ

pipelines

accesses. In the second case, the savings come from reducing

the static component of energy. It is important to make this

distinction because the power optimization techniques used

for the two situations will be vastly different. If the source of

energy savings is significant for the dynamic component, data

sampling technique is preferred, which may result in loss of

useful information. If the energy savings mostly come from the

static component, other techniques such as frequency scaling

and data rearrangement may help.

To estimate the energy savings breakdown, we first obtain

the power profile for nnread and nnwrite stages of our proxy

application, which is shown in Figure 6. From the profile, we

extract relevant metrics, namely average total power consump-

tion, and average dynamic power consumption for the two

stages. This information is shown in Table II. The dynamic en-

ergy savings is calculated by multiplying the average dynamic

TABLE II: Properties of nnread and nnwrite stages

Metric nnread nnwrite

Avg. Power (Total) 115.1 114.8

Avg. Power (Dynamic) 10.3 10.0
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TABLE III: Performance, power, and energy consumption for the fio tests

Metric Sequential Read Random Read Sequential Write Random Write

Execution time (s) 35.9 2230.0 27.0 31.0

Full-system power (W) 118 107 115.4 117.9

Disk dynamic power (W) 13.5 2.5 10.9 13.4

Disk dynamic energy (KJ) 0.4 5.5 2.9 0.4

Full-system energy (KJ) 4.2 238.6 3.1 3.6
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Fig. 11: Energy efficiency of post-processing and in-situ

pipelines

power shown in Table II with the corresponding time spent,

i.e. the difference in execution time between in-situ and post-

processing pipelines shown in Figure 7. The static savings are

computed by subtracting the dynamic savings computed from

the total energy savings shown in Figure 10. For case study

#1, the energy saved by avoiding idling (from static sources)

is 12.8 KJ, and the energy saved by reducing data accesses is

1.2 KJ. That is, as much as 91% of the energy is saved by

avoiding system idling.

D. Discussion

Our test application performs I/O operations sequentially.

This is not always the case in real applications, where I/O

operations may occur in a random fashion. To account for

this, we consider the sequential and random tests from the fio

disk benchmark. We read and write 4 GB of data to sequential

and random locations in the disk using this benchmark. The

power, energy, and execution time for these cases are shown in

Table III. For an application exhibiting random I/O behavior,

we could save 242.2 KJ (238.6 KJ+3.6 KJ) of energy by adopt-

ing in-situ visualization. However, we will lose the capability

for exploratory analysis. But, if we were to adopt data-

rearrangement techniques [30], [31] on the post-processing

pipeline, we will lose out only 7.3 KJ (4.2 KJ+3.1 KJ) of

energy, instead of 242.2 KJ, while at the same time retaining

all of the exploratory analysis capabilities. This presents many

interesting possibilities for reducing the power consumption of

the traditional post-processing pipelines without having to lose

out on exploratory analysis.

VI. CONCLUSION AND FUTURE WORK

In this study, we found that the energy saved by adopting

in-situ visualization is as high as 43% on a proxy application

configured for realistic I/O load. We also found that as much

as 91% of the energy savings comes from reducing the system

idle time. Comparatively, only 9% of the energy is saved by

reducing off-chip accesses. Using fio benchmark, we showed

cases where the I/O bottleneck and the associated power over-

head could be overcome even in the post-processing pipelines

when techniques such as software-directed data reorganization

is used.

A. Future Work

One of the major limitations of this work is that our tests

are based on only one application, running on a single node,

using traditional hard disks and file system. In future, we plan

to work on the following:

• Evaluation of real-world applications such as MPAS [32]

and xRAGE [33].

• Evaluation on a multi-node system to study the effect of

network I/O in addition to disk I/O.

• Evaluation on systems using RAID disks, solid-state

drives, and other flash-based devices such as NVRAM.

• Evaluation on multi-node systems running parallel file

systems to understand the impact of file system on energy

consumption.

• We would also like to develop a runtime system that

makes use of our characterization studies. Such work

would entail the development of power models that

estimates the hard disk power based on the number of

disk accesses, size of each access, and the corresponding

access pattern. Using this model, the runtime will decide

the power optimization technique to be used.
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