
Foresight: Analysis That Matters for Data Reduction
1st Pascal Grosset

Data Science at Scale, CCS-7
Los Alamos National Laboratory

Los Alamos, USA
pascalgrosset@lanl.gov

2nd Christopher M. Biwer
Data Science at Scale, CCS-7

Los Alamos National Laboratory
Los Alamos, USA
cmbiwer@lanl.gov

3nd Jesus Pulido
Data Science at Scale, CCS-7

Los Alamos National Laboratory
Los Alamos, USA

pulido@lanl.gov

4th Arvind T. Mohan
CCS-2: Computational Physics and Methods

Los Alamos National Laboratory
Los Alamos, USA
arvindm@lanl.gov

5th Ayan Biswas
Data Science at Scale, CCS-7

Los Alamos National Laboratory
Los Alamos, USA

ayan@lanl.gov

6th John Patchett
Data Science at Scale, CCS-7

Los Alamos National Laboratory
Los Alamos, USA
patchett@lanl.gov

7th Terece L. Turton
Data Science at Scale, CCS-7

Los Alamos National Laboratory
Los Alamos, USA
tlturton@lanl.gov

8th David H. Rogers
Data Science at Scale, CCS-7

Los Alamos National Laboratory
Los Alamos, USA

dhr@lanl.gov

9th Daniel Livescu
CCS-2: Computational Physics and Methods

Los Alamos National Laboratory
Los Alamos, USA
livescu@lanl.gov

10th James Ahrens
Data Science at Scale, CCS-7

Los Alamos National Laboratory
Los Alamos, USA

ahrens@lanl.gov

Abstract—As the computation power of supercomputers in-
creases, so does simulation size, which in turn produces orders-
of-magnitude more data. Because generated data often exceed
the simulation’s disk quota, many simulations would stand to
benefit from data-reduction techniques to reduce storage require-
ments. Such techniques include autoencoders, data compression
algorithms, and sampling. Lossy compression techniques can
significantly reduce data size, but such techniques come at the
expense of losing information that could result in incorrect
post hoc analysis results. To help scientists determine the best
compression they can get while keeping their analyses accurate,
we have developed Foresight, an analysis framework that enables
users to evaluate how different data-reduction techniques will
impact their analyses. We use particle data from a cosmology
simulation, turbulence data from Direct Numerical Simulation,
and asteroid impact data from xRage to demonstrate how
Foresight can help scientists determine the best data-reduction
technique for their simulations.

Index Terms—Data compression, Performance evaluation,
Multi-layer neural network

I. INTRODUCTION

The push toward exascale has given us extremely power-
ful supercomputers, with simulations consequently generating
massive amounts of data at an unprecedented rate. However,
I/O speeds and data storage capabilities have not increased
at the same rate as processing speeds, and hence, High
Performance Computing (HPC) centers struggle to store data
generated from these extreme-scale simulations. One solution

to address this “big data” issue is to look at data-reduction
techniques. A data-reduction scheme that provides a 5X reduc-
tion in terms of data size would enable us to store 5X as much
data. For a scientist, such a scheme also means saving data at
every 5 timesteps instead of at every 25 timesteps, resulting
in a higher fidelity capture of the simulation. Moreover, a fast
data-reduction technique would allow simulations to spend less
time doing I/O and more time performing actual computation.

Many different options now exist for data reduction, such
as autoencoder, data compression algorithms, and sampling.
(Note: we will use the term data compression algorithms in
this paper to denote “traditional” data-reduction algorithms
such as Lempel-Ziv (lz) [1] and JPEG [2].) Ideally, we would
not want to lose any data. Although lossless compression is
an option for reducing data sizes, the best compression ratio
from lossless data compression algorithms is usually less than
two [3], [4]. Lossy data compression algorithms, sampling,
and autoencoders are much more effective at reducing data
sizes but such techniques do so at the expense of losing
some of the information. For many scientists, performing a
large run on a supercomputer is an opportunity that comes
every couple of years, and the data generated from such
a run will be analyzed over several months. If the data is
lossily compressed to the point at which analysis is no longer
accurate, it is a disaster for the scientist. Resolving this issue
leads to three main questions: (i) how much precision/accuracy

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/$31.00 ©2020 IEEE

is needed to ensure that any post hoc analysis (analysis that
is run by the scientist on data generated by the simulation)
is still accurate? (ii) which data-reduction technique is best at
preserving enough accuracy for post hoc analysis? (iii) which
data-reduction technique will give the best compression ratio
and throughput for the desired accuracy level?

Currently, there is no framework that enables scientists
to evaluate systematically how data-reduction schemes will
impact their post hoc analysis. Compression benchmarking
tools, such as Z-checker [5] and Squash [6], are more focused
on metrics of interest for the compression community, such
as Mean Square Error (MSE) and Peak Signal-to-Noise Ratio
(PSNR), rather than a scientist’s concerns and interests. For
example, a cosmologist would rather know whether the dis-
tribution of halos (clusters of particles) is the same after the
data have been downsampled rather than the decompression
speeds. Moreover, such benchmarks only exist for compressing
algorithms. No framework exists that enables a scientist to
decide whether he/she should use sampling over autoencoders.

The key contribution of this paper is Foresight, a framework
that enables us to compare different data-reduction schemes
and evaluate how they impact post hoc analysis of simulation
data. Foresight’s evaluation has three stages:

• Data reduction: the data is reduced using data compres-
sion algorithms or sampling or autoencoders and then are
reconstructed. Foresight also comes with CBench, a C++
tool that enables scientific data compression algorithms
to run at scale on simulation data.

• Analysis: runs the simulation’s post hoc analysis on the
reconstructed and original data for comparison. Foresight
provides a simple API that enables scientists to describe
how to run their post hoc analysis.

• Visualization for comparison: analysis results from
the reconstructed and original data is visualized, and
compression ratio and other metrics are provided such
as throughput and PSNR (if scientific data compression
algorithms are used). Again, an API is provided that
enables the user to specify how to plot their results.

We demonstrate the usefulness of Foresight by running post
hoc analysis using data from three different simulations:
HACC [7], a Lagrangian cosmology code; CFDNS [8], an
Eulerian turbulence code; and xRage [9], a multidimensional
hydrodynamics code with continuous adaptive mesh refine-
ment, as testbeds to evaluate and pick the best data reduction
method. The ultimate power of Foresight is its ability to
sweep the huge parameter space of data reduction methods,
(both lossy and lossless data reduction techniques) and offer
scientists all the information they need to make the best
decision about what data reduction method is the most suited
to their task. While Verification & Validation are commonplace
in basic sciences such as physics, biology, and chemistry,
it has lagged behind in the HPC community. In this paper,
we are introducing an effort to create validation among data
reduction techniques by establishing guidelines for designing
data reduction analysis software and presenting a comparison

between ”conventional” data reduction techniques based on
entropy and ”newer” techniques such as autoencoders and
sampling. As far as we know, Foresight is currently the
only framework that allows comparison of data reduction
techniques to be done for scientific analysis.

The paper is organized as follows: In section II, we present
and discuss different data reduction techniques. In section III,
we describe the architecture of Foresight. In section IV, we
present use cases from HACC, CFDNS, and xRage, where
there is a need for data reduction, and show how Foresight
helped understand the impact of data reduction schemes.
Finally, in section V, we summarize our results and point to
future work that could be done in this area.

II. PREVIOUS WORK

A. Data-Reduction Evaluation Frameworks

Evaluating the performance and impact of data-reduction
techniques is as important as reducing data size; data that have
been compressed too much are useless for analysis. Currently,
only data compression algorithms offer benchmarks, which
usually focus on compression metrics such as:

• Compression Ratio: Original Size
Compressed Size

• Compression Throughput: Compressed Size
Runtime Of Algorithm

• Absolute Error: |Original V alue−Compressed V alue|
• Relative Error:

∣∣∣Original V alue−Compressed V alue
Original V alue

∣∣∣
• Mean Squared Error (MSE): 1n

∑n
i=1(Absolute Error)2

where n is the total number of data values.
• Peak Signal to Noise Ratio (PSNR): 10 log10(R2

MSE)
where R is the maximum possible value of the variable.

Z-checker, by Tao et al. [5], is dedicated to evaluating the
performance of compression algorithms. Z-checker evaluates
a number of lossy data compression algorithms using measures
such as PSNR and compression ratio, and it has a web
interface to visualize these metrics. Squash [6] is an online tool
that analyzes the performance of data compression algorithms,
but it omits commonly used compression algorithms used for
scientific data, such as SZ or ZFP. Libpressio [10] is a new
compression tool that focuses on introspection of compression
algorithms to facilitate their use. None of these frameworks
enable the user to conduct any evaluation of the impact of
lossy compression on domain-specific post hoc analysis. As
mentioned before, these frameworks are usually developed by
the compression community, and thus their evaluation does
not seem geared toward the scientists who want to use them.

B. Data-Reduction Evaluation

Scientists have already started to look beyond standard
compression metrics when it comes to choosing the best
data compression algorithm for their data. Baker et al. [11]
investigated the impact of lossy compression, using the fpzip
data compression algorithm, on climate data from the CESM
(Community Earth System Model) Large Ensemble project,
and concluded that the data loss is not significant enough
to affect analysis, so long as the number of bits used for
fpzip is carefully chosen. In their follow-up work [12], they

also performed a user study to validate how much data they
can lose before the user notices any visual difference. Lu et
al. [13] performed a somewhat more thorough analysis, where
they compared ISABELA, SZ, and ZFP on scientific data, but
the only evaluation they presented is visual blob detection.
Hoang et al. [14] investigated the interplay of precision and
resolution, and investigated how that can increase data quality
while keeping the size of the data low. They also pointed out
the need to adjust to application goals, as some applications
might be more concerned with quality of the data, whereas
other applications might need more data reduction, and are
hence more willing to sacrifice data quality for such reduc-
tion. The Foresight framework enables users to systematically
evaluate data reduction techniques for the different needs of
an application. For example, visualization typically has lower
accuracy requirements than a power spectrum based analysis.
So, a user can specify different analyses to evaluate these tasks
separately and ultimately pick the best data reduction method.

C. Data-Reduction Methods

1) Autoencoders: Convolutional Neural Networks (CNNs)
are well positioned to ingest high-dimensional datasets be-
cause they utilize parameter-sharing [15], where a filtering
kernel is convolved across the domain to learn the correlation
structure in the data. Early layers in the CNN are sensitive to
short-range correlations, and later layers build on this to learn
long-range correlation as well. Because the same parameters
are re-used (shared) in convolutions across the spatial domain,
CNNs need orders of magnitude fewer parameters than fully-
connected NNs. This is paramount for 2D and 3D flow prob-
lems, where the amount of data is exponential in the spatial
dimension of the problem, and a fully-connected approach thus
requires exponentially more parameters. The reader is referred
to Refs [16], [15], and [17] for details of CNNs.

2) Data Compression Algorithms: A portion of this study
examines the application of lossy data compression algorithms,
such as SZ [18], ZFP [19], fpzip [20], ISABELA [21], [22], and
MGARD [23]. These algorithms have different compression
strategies, but many of them can be driven by a similar series
of input parameters: absolute error tolerance, relative error tol-
erance, or the amount of bit truncation. As a point of reference,
we also compare to a lossless compressor, BloscLZ [24], that
has proven to be effective in previous work [4].

Blosc [24] is a meta compressor (it can use a number of
compression algorithms) optimized for binary data. Its default
compressor is BloscLZ, which is a streamlined implementation
of FastLZ [25], a variant of the LZ77 compression algorithm.
Blosc is the defacto standard lossless compressor used in
scientific applications.

fpzip is a predictive compressor that enables lossless or
lossy reduction, specializing in 2D and 3D floating-point scalar
fields. fpzip uses entropy coding of the residuals between the
Lorenzo predictions [26] and original data points to reduce the
dataset size. fpzip was designed as a lossless compressor but
it includes a lossy extension.

ZFP is another predictive compressor for floating-point
arrays that targets lossy compression to achieve very high
throughput. Optionally using error-bounded support, the ZFP
compressor has three modes: fixed rate (fixed number of bits),
fixed accuracy (variable number of bits but fixed number of
bit planes), and fixed precision (within specified absolute error
tolerance).

ISABELA (In-situ Sort-And-B-spline Error-bounded Lossy
Abatement) is a specialized lossy compression algorithm pri-
marily designed for spatio-temporal scientific datasets. By
first sorting the data point values, this method performs an
approximation using a cubic B-spline fit for dataset points.

MGARD (Multi-grid Adaptive Reduction of Data) [23]
is a recent, under-development method for multi-level lossy
compression. Based on the theory of multigrids, MGARD
employs a hierarchical scheme or an orthogonal decomposition
method to produce multiple levels of partial decompression of
the data within user-defined levels of tolerance.

SZ is an error-bounded data compression method that
enables the user to set either an absolute or a relative error
tolerance, as well as use the min or max of the two user-
specified tolerances. SZ aims to predict data points using a
curve-fitting model represented as a bit-array which is loss-
lessly compressed. Any data points that cannot be predicted
within the error bounds are stored at their original quality.

3) Sampling Methods: Sampling is a popular statistical
method to select a subset from a larger collection. We will
focus on generic sampling methods (unlike feature-based
sampling methods) that do not rely on user intervention to
reduce data sizes for Eulerian datasets.

Random sampling is a method where a random number, η
(where 0 ≤ η ≤1), is generated at each cell of an Eulerian
dataset. To select n% of the original data, all the locations
where η < n

100 are selected. Although this method is space-
filling and unbiased, it is not intended to prioritize the features
of the data that are often useful for visualization and data
reduction in the scientific community.

Regular sampling is a method where given N data points,
if 2× reduction is required, every other data point is selected
to produce the subsampled dataset. In addition to being
space-filling and unbiased, regular sampling also preserves
the topology of the data. However, like random sampling, it
does not prioritize the features of the data, and often produces
visualization artifacts caused by the regular nature of selection.

Histogram-driven sampling is a relatively new method, pro-
posed by Biswas et al. [27], that uses the concept of entropy-
maximization to generate samples with maximal entropy; more
importance is given to data from the low probability regions
(interesting features are usually rare in scientific datasets) and
less importance to the high probability regions. Although this
method does not retain the distributional properties in the
resulting samples, it has proven to be more useful in capturing
the salient data properties and in creating meaningful data
summaries from large scale scientific datasets.

TABLE I: The table below shows the functional and non-functional requirements that drove the Foresight design.

Functional Requirements Non-Functional Requirements
F1 - Supports different data reduction techniques NF1 - Provenance: Allows recreation of the pipeline for reproducible results

F2 - Ability to split data on multiple ranks NF2 - API: Provides a simple API for specifying data reduction, analysis, and
visualization

F3 - Run post hoc analysis on supercomputers NF3 - Logging: Provides detailed logging of every step for debugging purposes

F4 - Support visualization and exchange of results NF4 - Extensibility: Ability to add new features without changing the whole code
base
NF5 - Usability: Ease of building and running on supercomputer
NF6 - Self-Verification: Have some degree of confidence that the framework results
are correct

D. Visualization

Once we have compressed and analyzed data, we have
two types of information for the user: (1) metrics such as
compression ratio, MSE, compression, and decompression
throughput; and (2) comparative analysis of output such as
power spectra and halo distributions. Showing the compressors
and the metrics is a multi-dimensional data analysis visual-
ization problem. The two main tools for visualizing multi-
dimensional data are scatter plot matrices [28] and parallel
coordinates. Scatter plot matrices are basically tables of scatter
plots, where in each scatter plot a metric is plotted against
another. One of the issues of using such a representation for
Foresight is that one of the assets of Foresight is its ability to
sweep through, let’s say 30 different compression parameters,
and then enable the user to review the results for each. Using a
scatter plot does not scale in this case. On the other hand, using
parallel coordinates will enable us to see all the parameters at
once, and it will also enable us to highlight, or only show,
parameters that are relevant to the analysis. Moreover, we
decided to not use plots such as radar or star plot, as their
circular nature is not conducive for showing compression
metrics—and such plots might even be misleading.

In addition to compression metrics, we also want to show
the result of domain relevant post hoc analysis. Most sim-
ulation codes have tools to plot power spectrum ratios and
related quantities. Because we want to show how data re-
duction affects the post hoc analysis, we should ideally be
combining the compression metrics with the analysis results.
Many generic tools exist to create dashboards for presenting
data. Tableau [29], Plotly [30], and D3 [31] are widely used
although, in many instances, a server of some kind is needed
to host these visualizations. Eventually, we chose the Cinema
Explorer tool [32]. Cinema Explorer is built on D3 and
can easily render the contents of a comma-separated value
(CSV) file in an interactive web-based viewer. Moreover,
if the CSV file contain images (e.g., power spectrum ratio
plots), these can be displayed in an image spread linked to
the parallel coordinates view. Finally, Cinema Explorer does
not rely on any server since it is built using only client-
side operations. Consequently, this facilitates the sharing of
the results with other scientists; Cinema Explorer databases
can even be embedded in GitHub pages, where they can be
browsed by anyone without installing any software.

III. ARCHITECTURE

To come up with a useful framework to evaluating data
reductions, we must first determine what are the needs of the
application. In this case, we should be able to run different
data reduction techniques on large datasets at scale on HPCs.
Then, we should be able to run post hoc analysis on the
results of the previous stage and finally compute and visualize
the differences between analyses run on reconstructed data
vs. original data. These needs help establish the functional
requirements of our framework. Most tools developed up to
now can only run compression algorithms; i.e., F1 in Table I.

When creating such frameworks, non-functional require-
ments may be as important as the functional requirements.
Although the ease of building software on supercomputers is
improving with tools such as Spack [33] and CMake, keeping
the dependencies to a minimum is always a good idea; odd
dependencies, such as relying on LATEX for generating reports
(as is the case with Z-Checker), should be avoided. Other
prominent features, as shown in Table I, include provenance,
logging, usability, extensibility, and an easy-to-use API. In the
next section, we present the design of Foresight, and show how
we address the functional and non-functional requirements.

Foresight’s evaluation process has the following stages:
1) Data Reduction: where data compression algorithms or

sampling or autoencoder are used to reduce the amount
of stored data.

2) Analysis: where post hoc simulation analysis is run on
the reduced data.

3) Comparison and Visualization: where the results of the
simulation analysis are plotted and Cinema databases are
generated (as needed).

As shown in Fig. 1, at the heart of Foresight—and the
main driver of these three stages—is the Data Reduction and
Analysis Workflow (DRAW) tool. DRAW coordinates all the
activities in Foresight and is responsible for launching and
managing jobs. The two other tools provided by Foresight
are (1) CBench, a C++ tool to run compression at scale on
scientific data, and (2) Cinema, a Python tool for creating a
Cinema Explorer database. Input to Foresight is through JSON
files with the following sections (Listing 1):

Listing 1: Structure of the JSON input
{
"input" : {},
"data-reduction" : {},

"analysis" : {},
"visualization" : {
"plots" : {},
"cinema" : {}

}
}

where:

• input: specifies the location of the input file and the
variables to be compressed

• data-reduction: specifies the data reduction methods to
be used; it will, for example, contain the parameters to
CBench if the latter is being used

• analysis: specifies the analysis to be run; it usually points
to the post hoc analysis code to be run

• visualization: specifies the type of plotting to be done

– plots: points to the plotting routines used by the
simulation

– cinema: specifies the parameters to create a Cinema
database for Foresight

The JSON file format has been chosen to specify the input
parameters because it is easy to understand and can be easily
edited remotely using screen-oriented editors such as vim.
JSON files facilitate usability of Foresight. Once the whole
pipeline of Foresight is complete, a new JSON is created
that shows all the modifications that the pipeline made to the
original JSON file (if any) and adds a git hash to the file.
Using that git hash, a user can check out that specific tag
from the git repository and run the exact same pipeline (same
code, same number of MPI ranks, etc.) to replicate the results.
These features allow us to satisfy NF1 and NF5 mentioned in
Table I, which deal with the reproducibility and criterion. We
will now look at the different components of Foresight.

Fig. 1: Architecture of Foresight framework, with CBench and
DRAW modules provided shown in purple.

Fig. 2: UML diagram of the DRAW workflow. DRAW has
two classes: Workflow and Job.

A. DRAW

DRAW is a Python workflow tool providing simple, yet
powerful workflow features such as creating SLURM jobs and
setting up a dependency graph for data reduction jobs. As
shown in Fig. 2, DRAW has two classes: Workflow and Job.
The Job class stores all the parameters needed to run a job.
Listing 2 shows the input parameters used to create a job.

Listing 2: Structure of the JSON job input
{
"name": "job_name",
"path": "run_command path_to_job",
"params": ["argument_1",

"argument_2", ...],
"evn_path": "scripts/bash.darwin",
"pre-run-command": ["...", "...", ...],
"post-run-command": ["...", "...", ...],
"configuration":
{

"partition": "general",
"nodes": 8,
"ntasks-per-node": 12

}
}

In Listing 2, path points to the job to be run (as well as
the command to run it); evn path points to the script that
loads the environment parameters for the job; configuration
describes the resources to allocate to that job; and pre-run-
command and post-run-command specify any commands that
must be run before and after the SLURM job.

As shown in Fig. 2, the Workflow class parses the in-
put JSON file and creates SLURM jobs with proper de-
pendencies. When using Foresight, add data reduction jobs,
add analysis jobs, and add vis jobs must be implemented.
These specify the reduction technique, post hoc analysis, and
visualization jobs to be used respectively. Moreover, while
implementing those, the SLURM job dependency is also
specified. Job dependencies can be specified as depending
on all previous jobs, one specific job, or a category of jobs.
For example, the visualization jobs must wait for all analysis
jobs to be finished, whereas the analysis jobs must wait on
a single data reduction job to finish. A typical dependency
is shown in Fig. 3. The workflow input structure shown in
Listing 2 is used for all jobs (CBench runs, analysis runs,
and visualization runs). This is part of the effort to provide a

consistent yet simple API to facilitate job submission, thereby
satisfying NF2.

Fig. 3: Dependency graph of a standard Foresight workflow
with data reduction, analysis, and visualization components.

Foresight has been designed to be modular and extensible,
the reason being that very often data reduction, analysis,
and visualization often need several stages. For example,
let’s consider the two-stage data reduction in Fig. 3—an
autoencoder followed by t-SNE [34], which is often used
for compression [35]. Doing that in Foresight would involve
creating a new Job instance for the autoencoder, and then
another Job for the t-SNE calculation with a dependency on the
Autoencoder job. The analysis would then depend on the Data
Reduction job group. This is fully supported by Foresight’s
DRAW workflow.

B. Compression Bench (CBench)

CBench is the compression component of Foresight. Run-
ning data compression algorithms is probably the most com-
monly used data reduction technique, and so we have added it
to Foresight to facilitate the running of scientific compression
algorithms, as well as to allow newer reduction techniques,
such as autoencoders and sampling, to be compared against
state-of-the-art data reduction techniques.

Written in C++ and MPI, CBench is designed to be easy-
to-use, portable, and flexible such that it scales across many
platforms and architectures ranging from local desktops to
supercomputers. CBench uses the Abstract Factory design pat-
tern, a creational design pattern that allows the easy addition
of new data compression algorithms, compression metrics, and
data loaders with minimal changes to the CBench main code.

Although CBench is an integral component of the Foresight
framework for distributed-computing workflows, it can also
be run on its own to produce metrics such as compression
ratio, compression throughput, and relative error. As shown in
Fig. 4, CBench has three main components:

• The Data Loader module enables the addition of new
data readers. It provides an interface that requires the
implementation of loadData(), saveCompressedData(),
and write data writeData() methods. Because CBench is
designed to run in parallel, to mimic how a simulation
will use a compressor, a data partition module is provided.
This module will equally split blocks of data among
multiple MPI ranks for distributed loading. The output
of the data loader module is a pointer to the data loaded.
Currently, CBench supports loaders for raw binary data,
GenericIO for the HACC simulation, HDF5 for the Nyx
simulation [36], and the VTI file format from VTK [37].

• The Compressor module supports the addition of scien-
tific compressors through a simple interface that requires
the implementation of a compress() and decompress()
function. This interface makes the addition of compres-
sors quite trivial since most data compression algorithms
have a compress and decompress function where the
parameters are: the data to be compressed/decompressed,
compression parameters, and size of the dataset. All a
user needs to do is get the pointer from the data loader
module, and the input parameters from the JSON file.
The compressor module will in turn have a pointer to the
decompressed dataset. We currently support most exist-
ing data compression algorithms, namely the following:
BLOSC, fpzip, ISABELA, MGARD, SZ, and ZFP. These
compressors can be linked by pointing CBench to the
static (.a) or dynamic library (.so). If a user chooses to
build a compressor from source, the CMake interface can
be used to point to the libraries.

• The Metrics module supports the addition of custom-
made metrics through the execute() function. It receives
a pointer to the data that have been compressed and an
MPI communicator, enabling the computation of both
local and global metrics with cross-rank communication.
Currently implemented metrics are absolute and relative
error, MSE, PSNR, compression ratio, and compression
and decompression throughput.

Input to CBench is through a JSON file that specifies
the file to compress, scalars to compress, data compression
algorithms, parameters to use, and where to output the com-
pression metrics. The two main outputs from CBench are
a CSV file that contains compression metrics and the lossy
compressed data for each compressor that has been used. Some
metrics, such as compression ratio, compression throughput,
and decompression throughput, are always generated. The user
can specify other metrics to output, such as absolute error and
MSE, PSNR, in addition to easily implementing their own.
The CSV file format was chosen because most data analytics
packages can inherently read CSV files.

Fig. 4: CBench is composed of three main components:
the Data Loader (I/O), Compressors (data compression al-
gorithms), and Metrics (statistics). The abstract nature and
simplicity of CBench enables the addition of virtually any
data-type, compressor, or metric.

The flow of control through CBench is shown in Algo-
rithm 1. For each timestep, and for each data field to be
compressed, the user specifies which compression parameters
to use and the name of the resulting output file. Then,
each scalar specified in the input is compressed using the
specified compressor settings. Finally, the reconstructed data
is outputted to disk. Throughout the execution of CBench,
logs are being created (satisfying NF3) for each MPI rank
(this can be turned off by going into release mode); metrics
and lossily reconstructed data are being saved to disk. All
these features enable CBench to be easily used by developers;
for example, Jin et al. [38] extended CBench by adding the
GPU compressors from SZ and ZFP for cosmology data. Note:

Fig. 5: Cinema Explorer with Parallel Coordinates view of a
CFDNS dataset compressed using SZ and ZFP with different
input parameters. The top view shows compression metrics
and the bottom view shows the result of analysis.

Algorithm 1: CBench algorithm.

read input JSON file;
initialize reader;
for each timestep do

for each compressor do
for each data field to be processed do

load compressor parameter;
compress data;
for each compressor metric to be measured
do

compute metric;

output metrics to disk;

Save decompressed data to disk;

As shown in Fig. 4, BLOSC, a lossless compressor, is also
included in CBench. BLOSC has been chosen as it is often the
defacto standard for lossless compression in simulations such
as HACC. While no evaluation is needed when BLOSC is used
as a compressor since no data is lost, including BLOSC serves
two purposes: firstly, to allow scientists to see how much
more compression a lossy compressor will give over a lossless
compressor, and secondly, to validate that there are no bugs in
the framework. BLOSC follows the exact path that a lossy data
reduction method will, but since no data is lost, in HACC all
halos should be preserved and in the CFDNS dataset, all the
small, medium, and large scale features should be preserved.
If this happens not to be the case, this is an indication of a bug
in our framework. This satisfies NF6 and helps the user build
confidence that they can trust the results from the framework.
The use of BLOSC for the CFDNS dataset is shown in Fig. 5.

C. Cinema Visualization

Fig. 5 shows an example of the output for Foresight. The top
window will contain all the different data-reduction metrics
gathered for the dataset, whereas the bottom window will
contain the results of the post hoc analysis. The metrics
are generally gathered from the data-reduction portion of
the pipeline and will usually have at least three dimensions:
compression ratio, compression throughput, and the input
compressor settings. To generate a Cinema database, the user
can choose to implement the Cinema class of DRAW that will
provide an API and some utilities to facilitate the creation
of Cinema Explorer databases. However, given that a cinema
database is really just a CSV file within which each row
has the information for one scalar and compression settings,
the user could perform this process manually too. Another
feature of the Cinema Explorer tool is that it provides a
scatter plot window, where the user can decide to visualize
one metric against another; e.g., the user may want to see
which compressor has the best compression ratio and lowest
MSE for each variable-compression parameter combinations.

However, the notable benefit of the Cinema Explorer tool
is its ability to filter out results based on user selection. For

Fig. 6: Using the Cinema Explorer to examine the QR-Plot.

example, let’s say that the user wants to find the characteristics
of the QR-plot at an absolute error of 1. This is done by
selecting 1 in the parallel coordinates window for the absolute
error bar, which ultimately narrows the plots in the image
spread. Clicking the QR-plot, as shown in Fig 6, allows us to
zoom in on the plot for further examination.

IV. ANALYSIS AND EVALUATION

The main supercomputer used for testing is Darwin, a
heterogeneous supercomputer at the Los Alamos National
Laboratory, with about 400 nodes. For large datasets, we
used the Haswell partition, that has 2,388 Intel E5-2698
v3 nodes, of the Cori, a Cray XC40, supercomputer at
NERSC. Foresight is an Open Source software available at
https://github.com/lanl/VizAly-Foresight.

A. Simulation Use Cases

1) CFDNS: The dataset consists of a 3D Direct Numerical
Simulation (DNS) of homogeneous, isotropic turbulence, in
a box of size 1283. We denote this dataset as HIT for the
remainder of this work. We provide a brief overview of the
simulation and its physics in this section, and a detailed
discussion can be found in Daniel et. al [39]. The HIT
dataset is obtained using the incompressible version of the
CFDNS code ([39] and references therein), which uses a clas-
sical pseudo-spectral algorithm. We solve the incompressible
Navier-Stokes equations:

∂xi
vi = 0, ∂tvi + vj∂xj

vi = −1

ρ
∂xi

p+ ν∆vi + fvi ,

where fv is a low band forcing, restricted to small wavenum-
bers k < 1.5. The 1283 pseudo-spectral simulations are de-
aliased using a combination of phase-shifting and truncation
to achieve a maximum resolved wavenumber of kmax =√

2/3 × 128 ∼ 60. Based on the sampling rate, each eddy
turnover time τ consists of 33 snapshots. The training dataset
uses 22 snapshots in the time range ≈ 0 − 0.75τ . The test
dataset also consists of 22 snapshots but in the time range
≈ 4− 4.75τ .

Data Reduction Requirement: Turbulence datasets are ex-
tremely large, which causes inefficient archival storage, and
in many cases, inefficient transmission of data [40], [41].
Furthermore, turbulence is highly multiscale in nature, and

loss of information at various scales caused by compression
algorithms must be effectively regulated and quantified, since
it might lead to deviations from physical laws that were obeyed
in the raw dataset. Another major application of compression
is to construct reduced order/surrogate models, which need
to be computationally efficient and yet resolve the scales
required for the specific application. In most engineering
applications, compression and modeling of turbulence data
require that large and inertial scale features be accurately
retained, although there is considerable leeway in discarding
small scale information. Some of the key aspects we aim to
evaluate are as follows:

• CFDNS-A: Which data compression algorithm will give
the best throughput, PSNR, and MSE for a very large
compression ratio (e.g., 300X compression), typical of
autoencoders?

• CFDNS-B: How do data compression algorithms com-
pare with autoencoders for capturing not just the large
scale portion of the energy spectrum, but also the 3D
morphology of the flow?

2) HACC: HACC [7] is an extreme-scale cosmological
simulation code used to simulate the evolution of the universe.
It uses an N-Body Lagrangian framework for modeling the
action of gravity on dark matter and a Conservative Reproduc-
ing Kernel Smoothed Particle Hydrodynamics (CRKSPH) [42]
scheme for gas dynamics. The raw output of HACC is a
massive quantity of dark matter particles, each having an
index, position (x, y, z), and velocity (vx,vy ,vz). It generates
TB (PB for large runs) of data, and often runs out of disk
space on HPC systems. The analysis suite of HACC, called
CosmoTools, is used to compute the power spectrum and dark
matter halos (clusters of dark matter particles). The power
spectrum is useful for characterizing the clustering properties
of N-body simulations [43]. Dark halos are of interest because,
according to the leading theories, they play a crucial role in
galaxy formation and dark matter is said to compose 80% to
90% of the universe. For halos, the values of interest are mass,
number of particles, and radius.

Data Reduction Requirement: Cosmology is an observa-
tional science. So, it is important that the theoretical simulation
error does not exceed the observational error used in current
and future observational campaigns. As long as the data loss
is within 3 kpc (kiloparsec) in position, which in HACC
translates to absolute error of 0.003, the data will be within the
bounds of observational error and post hoc analysis will still
be able to produce meaningful results. HACC already uses
BLOSC for lossless compression and the developers would
like to add lossy compression to the simulation. Before picking
a lossy compressor, they would like to know the following:

• HACC-A: Which compressor will give the best compres-
sion ratio and throughput for a maximum absolute error
of 0.003?

• HACC-B: What is the impact of an absolute error of
3 kpc on the power spectrum and halos?

https://github.com/lanl/VizAly-Foresight

TABLE II: Data Compressing algorithm metrics for the HIT CFDNS dataset, answering CFDNS-A with a compression ratio
of about 300X. SZ was run in relative error mode, whereas ZFP was run in both relative error and fixed rate modes.

Data compression
Algorithm Parameters Variable Absolute

Error
Relative
Error PSNR MSE Throughput (MB/s) Compression

Ratio

SZ relative error 0.99
vx 3.29 3.09 0.08 25.21 7.44 330.71
vy 0.52 0.52 0 20.16 7.53 307.4
vz 1.35 1.35 0.02 15.99 7.53 269.19

ZFP relative error 1.0
vx 9.53 7.45 2.63 9.9 346.11 310.9
vy 0.99 0.99 0.01 11.53 345.57 312.11
vz 2.17 2.17 0.15 7.12 340.5 311.8

ZFP fixed rate 0.2
vx 9.53 7.45 2.63 9.9 338.29 315.08
vy 0.99 0.99 0.01 11.53 342.25 315.08
vz 2.17 2.17 0.15 7.12 338.73 315.08

(a) Using Autoencoder (compression ratio:
≈ 300X)

(b) Using SZ with 0.99 relative error (compres-
sion ratio: 269X - 330X)

(c) Using ZFP with compression rate of 0.2
(compression ratio: ≈ 315X)

Fig. 7: QR-plots of the HIT CFDNS dataset after lossy reconstruction with an autoencoder and the data compression algorithms.
The top row shows typical instantaneous plots (i.e., comparisons for one snapshot) and the bottom row shows averages over
the testing range.

• HACC-C: How much can we increase the compression
ratio before the data become unusable?

3) xRage: xRage [44] is a parallel multi-physics Eulerian
hydrodynamics code developed at the Los Alamos National
Laboratory. It uses an Adaptive Mesh Refinement technique
that allows higher and lower resolution areas of the simulation
grid (where appropriate) for computation. Through ParaView
Catalyst [45], it outputs VTK unstructured grid data, which
is resampled to a regular grid of 5003 before being written
to disk. xRage was used to produce the Deep Water Im-
pact Ensemble dataset [46], which was created to study the
propensity of asteroids impacting deep ocean water to create
tsunamis. The crater formed during the impact is of great
interest to scientists because tsunami waves originate from the
collapsing crater, and the radius of the impact crater is directly
proportional to the kinetic energy of the impact [47].

Data Reduction Requirement: The deep water impact en-

semble dataset is a massive dataset that very often needs to
be downsampled for sharing. However, while downsampling
the dataset, important features such as the crater and spray of
water ejected must be preserved so that any post hoc analysis
run on the dataset is still viable. Given that different analyses
require different accuracy levels, it is difficult to set a hard
limit on any quality metric, but knowing which compression
method (sampling or data compression algorithm) will give the
best compression quality (the meaning of quality will differ for
different analysis) at a certain compression level is important.
So for this dataset, the questions to be answered are as follows:

• xRage-A: Which data reduction scheme will give the best
compression quality when targeting 50X compression?

• xRage-B: How does sampling compare to data compres-
sion algorithms at the asteroid impact crater?

TABLE III: Compression of the HACC-256 particle dataset answering HACC-A, showing the best set of parameters to reach
a maximum absolute error target of 0.003 for each position scalar fields from a run on Cori at NERSC.

Data compression
Algorithm Parameters Variable Absolute

Error PSNR MSE Throughput (MB/s) Compression
Ratio

x 0.000961 115.72 1.71e-07 14.48 3.18
y 0.000961 115.52 1.79e-07 14.06 3.12fpzip Truncate: 26 bits
z 0.000961 115.52 1.78e-07 13.95 3.04
x 0.00256 112.85 3.40e-07 1.24 2.21
y 0.00256 111.96 4.17e-07 1.03 2.09ISABELA

Window Size: 2048
Tolerance: 0.001
Coefficients: 50 z 0.00256 110.69 5.60e-07 0.85 1.49

x 0.00299 103.42 2.99e-06 77.52 4.93
y 0.00299 103.40 2.99e-06 76.89 4.78SZ Absolute Error

Bound: 0.003 z 0.00299 103.41 2.99e-06 73.95 4.60
x 0.00291 111.76 4.37e-07 46.41 2.07
y 0.00243 111.761 4.37e-07 47.55 2.06ZFP

Absolute Error
Bound: 0.007 z 0.00242 111.76 4.37e-07 46.63 2.04

(a) Halo mass distribution (b) Power spectrum ratio

Fig. 8: Halo analysis meeting the requirements for HACC-B. Ratio of mass distributions (a) and the power spectra ratio (b)
verify that both derivative quantities are well preserved.

(a) Halo mass distribution (b) Power spectrum ratio evolution

Fig. 9: Compression parameter scaling addresses HACC-C using derivative halo mass distribution (a) and power spectra ratio
(b).

B. Evaluation Results

1) CFDNS: The HIT sample dataset has 50 timesteps with
a total size of ≈ 2.5 GB. For this application, autoencoders
were being used to compress the data, with the compression

ratio set to 300X because that struck the right balance of data
size and accuracy during post hoc analysis [48].

• CFDNS-A: Compared to autoencoders, data compression
algorithms are not usually set up to target a specific
compression ratio. So, using Foresight, a parameter sweep

was performed to determine which compressor would
have minimal signal loss at a 300X compression ratio.
Moreover, because of the presence of large rare deviations
from the mean caused by small scale intermittency,
relative error was used instead of absolute error to drive
the data compression algorithms. After running these
tests, it was found that SZ and ZFP were the best
compressors to use. Table II shows the results from the
best data compression algorithms. Although ZFP has a
very high throughput, SZ has better MSE and PSNR,
which probably means that it has fewer errors. There is
no clear answer to CFDNS-A, as which compressor to
use depends on whether throughput or PSNR and MSE
is more important.

• CFDNS-B: The joint probability density function of Q
and R, the second and third invariants of the veloc-
ity gradient tensor (known as QR-plot), can be used
to describe the characteristic structure of turbulence at
different scales. This is accomplished by coarse-graining
the 3D velocity field using a Lagrangian tetrad represen-
tation, before computing the QR-plot ([49] and references
therein). Here, r is related to the volume of the tetrahe-
dron and defines the scale of the observation. Comparing
the QR-plot is a stringent test of 3D turbulence topology
at different scales r, with the characteristic tear drop
shape at intermediate scales being one of the hallmarks
of 3D turbulence. Fig. 7 shows the QR diagrams for the
autoencoder compared to the SZ and ZFP results. While
it expected that small scales are not well represented
compared to the DNS results due to the lossy compres-
sion, as it can be seen, ZFP struggles to preserve large
scale features (r=32) and medium scale features (r=8) as
well as SZ and the autoencoder; the results from SZ and
autoencoders are virtually indistinguishable. To answer
CFDNS-B, SZ is on par with the autoencoder, but ZFP
at 300X compression lags behind.

TABLE IV: Timings for analysis in Table III.

fpzip ISABELA ZFP SZ
Compression Time (s) 1.61 26.85 0.22 0.28
Decompression Time (s) 1.40 1.77 0.24 0.33

These results show the importance of validating compres-
sion results with analysis. ZFP has a very high throughput and
could be attractive for in situ compression but this comes at
the risk of losing a lot of information about the simulation
since ZFP fails to preserve large scale features for analysis.

2) HACC: The HACC dataset used for testing is a 45 GB
file distributed in 256 partitions.

• HACC-A: To know which compressor is the best for a
maximum absolute error of 0.003, we ran a parameter
sweep using fpzip, ISABELA, SZ, and ZFP to determine
which of these compressors would give the best com-
pression ratio for an absolute error of 3 kpc, and show
the results in Table III. Only SZ and ZFP allow us to
specify absolute error as an input parameter. Furthermore,

of these two algorithms, SZ’s error distribution is able to
achieve the closest to this target absolute error bound; for
a survey on error distributions from lossy compressors see
Lindstrom [50].

• HACC-B: Fig. 8(a) shows the halo mass distribution for
each of the compressors in Table III, and Fig. 8(b) shows
the power spectrum ratios for them. As we can see from
Fig. 8(b), all the compressors from Table III are well
within the 1% limit, which makes them all valid for post
hoc analysis. The halos mass distribution from Fig. 8(a)
is also within the acceptable deviation range for analysis,
further validating that an absolute error of 0.003 would
not damage any post hoc analysis.

• HACC-C: For this analysis, we focused on SZ because
it has the best compression ratio for HACC. Fig. 9
shows how the halo mass distribution and power spectrum
evolve with various compression parameters set for SZ.
SZ was near the 1% limit with an absolute error tolerance
of 0.003, placing an upper limit on the absolute error
tolerance for HACC-C. If the absolute error tolerance is
lowered to 0.002, 0.001, or 0.0001 we note that the error
decreases to well within the error budget; however, the
compression ratios also reduced to 4.55, 3.98, and 2.78,
respectively, for the x-position.

For the HACC compression experiments, a maximum ab-
solute error of 0.003 is seen fit for each of the position
values. While SZ and ZFP (ZFP does not strictly abide by
the absolute error specified) allow us to do that, with fpzip
and ISABELA, we cannot directly request such a bound. The
ability to clearly specify the limits of tolerance is an important
factor for scientific applications since it gives the scientist
some peace of mind that the data will never be affected by
more than what is specified. This evaluation was run on the
Cori supercomputer at NERSC using 128 MPI ranks; 32 nodes
and 4 cores per node, and took on average 190.6s. Load time
for each scalar was 2.91s and metrics computation took an
average of 4.81s. Compression and decompression time varied
per compressor and their timings are shown in Table IV. All
the timings quoted are from an average of 5 runs.

3) xRage: The asteroid impact dataset used from the xRage
simulation has a total of 475 timesteps, stored in a compressed
VTK format that has already been sampled from its original
unstructured format onto a regular grid. For this application,
features of interest (craters) appear after the asteroid hits the
ocean, which occurs at timestep 99 in this dataset.

• xRage-A: A sweep of different compression parameters
was done to determine data reduction methods that came
close to giving 50X compression. From Table V, we can
see that data compression algorithms have a higher (bet-
ter) PSNR and throughput and lower (better) MSE and
absolute error. Looking at Fig. 10, where we only showed
the best of the sampling and data compression algorithm,
we can see SZ preserves the details much better than
sampling. In response to xRage-A, compression should
be used instead of sampling.

TABLE V: Data reduction of the xRage asteroid impact dataset answering xRage-A. Both sampling and compression methods
target a compression ratio of 50X, on the water volume fraction (scalar field v02 in the simulation).

Reduction Method Parameters Absolute Error PSNR MSE Throughput (MB/s) Compression Ratio
Regular Sampling Rate: 0.015 1.0 23.796 0.00417 73.5 48.23
Random Sampling Rate: 0.015 1.0 23.158 0.00483 72.8 49.94

Histogram Sampling Rate: 0.010 1.0 19.0459 0.01245 7.93 49.52
SZ abs 0.0003 0.000300 107.202 1.904e-11 151.576 52.15
ZFP abs 0.01 0.002262 81.49 7.096e-09 250.806 46.73

(a) Original (b) Histogram Sampling (c) SZ Compression

Fig. 10: Comparison of sampling against SZ lossy compression. The crater region for which the SNR is being calculated is
highlighted in (a).

• xRage-B: When analyzing the structure of the asteroid
impact crater, the primary metric for evaluation is the
Signal-to-Noise Ratio (SNR) of the region. Generally, a
higher SNR denotes a better preservation of crater fea-
tures. When analyzing the asteroid crater region, shown
inside a rectangle in Fig. 10(a), we found that the different
data reduction methods produced the following SNR
results: Regular sampling: 13.359; Random sampling:
12.570; Histogram sampling: 14.400; SZ: 19.2790; and
ZFP: 19.2787. In response to xRage-A, we can see that
data compression algorithms perform better than sam-
pling both visually and in terms of SNR.

The results show that despite recent developments, sampling
techniques still lag behind data compression algorithms with
low data throughput and poor reconstruction quality.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduce Foresight, a framework that
enables users to compare different data-reduction methods and
evaluate their impact on post hoc analysis of simulation data.
To showcase the capabilities of Foresight, we showed how
it helped explore data-reduction results from three different
simulation codes (HACC, CFDNS, and xRage) applied to
three different domains (cosmology, turbulence, and hydro-
dynamics). The comparison was performed using an autoen-
coder, data compression algorithms, and sampling methods.
Foresight’s ability to seamlessly run on HPC systems (where
scientific simulations are run), and its ability to share data
through Cinema databases, makes it very easy for scientists
to use it and share the results of their evaluations. No such
tool currently exists for evaluating analysis of data-reduction
techniques to help scientists pick the right compression method
for their data. As future work we would like to create a
feedback loop based on specified quality constraints (e.g.,

a 1% maximum difference in power spectrum ratio) so that
Foresight would iterate on the input compression parameters to
find the best parameters to satisfy the stated quality constraints.
Another interesting future work would be to run Foresight
along with a simulation and perform a limited parameter
study in situ, which would allow us to choose the best
compressor configuration based on the data that the simulation
is generating.

ACKNOWLEDGMENT

This work has been authored by employees of Triad Na-
tional Security, LLC which operates Los Alamos National
Laboratory under Contract No. 89233218CNA000001 with
the U.S. Department of Energy/National Nuclear Security
Administration.

The authors would like to thank the National Energy Re-
search Scientific Computing Center (NERSC) for providing
access to the Cori supercomputer and LANL for access to
the Darwin Supercomputer. They would also like to thank the
HACC team at Argonne National Laboratory for granting us
access to cosmology datasets.

This research was supported by the Exasky Exascale Com-
puting Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the Na-
tional Nuclear Security Administration. A.T.M. and D.L. have
been supported by LANL’s LDRD program, project number
20190058DR.

REFERENCES

[1] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on Information Theory, vol. 23, no. 3,
pp. 337–343, 1977.

[2] G. K. Wallace, “The jpeg still picture compression standard,” IEEE
Transactions on Consumer Electronics, vol. 38, no. 1, pp. xviii–xxxiv,
1992.

[3] S. Son, Z. Chen, W. Hendrix, A. Agrawal, W. Liao, and A. Choudhary,
“Data compression for the exascale computing era - survey,” Supercom-
put. Front. Innov.: Int. J., vol. 1, pp. 76–88, July 2014.

[4] M. Zeyen, J. Ahrens, H. Hagen, K. Heitmann, and S. Habib, “Cosmolog-
ical particle data compression in practice,” in Proceedings of the In Situ
Infrastructures on Enabling Extreme-Scale Analysis and Visualization,
ISAV’17, (New York, NY, USA), pp. 12–16, ACM, 2017.

[5] D. Tao, S. Di, H. Guo, Z. Chen, and F. Cappello, “Z-checker: A
framework for assessing lossy compression of scientific data,” CoRR,
vol. abs/1707.09320, 2017.

[6] E. Nemerson, “Squash compression benchmark,” 2020. [ONLINE] https:
//quixdb.github.io/squash-benchmark/, Last accessed on 2020-03-02.

[7] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel,
P. Fasel, V. Morozov, G. Zagaris, T. Peterka, V. Vishwanath, Z. Lukić,
S. Sehrish, and W. keng Liao, “Hacc: Simulating sky surveys on state-of-
the-art supercomputing architectures,” New Astronomy, vol. 42, pp. 49
– 65, 2016.

[8] D. Livescu, J. Mohd-Yusof, M. R. Petersen, and J. W. Grove, “CFDNS:
A computer code for direct numerical simulation of turbulent flows,”
tech. rep., Los Alamos National Laboratory, 2009. LA-CC-09-100.

[9] M. Gittings, R. Weaver, M. Clover, T. Betlach, N. Byrne, R. Coker,
E. Dendy, R. Hueckstaedt, K. New, W. R. Oakes, D. Ranta, and
R. Stefan, “The RAGE radiation-hydrodynamic code,” Computational
Science & Discovery, vol. 1, p. 015005, nov 2008.

[10] R. Underwood, “Libpressio,” 2020. Codesign Center for Online Data
Analysis and Reduction [ONLINE]. https://github.com/CODARcode/
libpressio/, Last accessed on 2020-03-02.

[11] A. H. Baker, D. M. Hammerling, S. A. Mickelson, H. Xu, M. B.
Stolpe, P. Naveau, B. Sanderson, I. Ebert-Uphoff, S. Samarasinghe,
F. De Simone, F. Carbone, C. N. Gencarelli, J. M. Dennis, J. E. Kay, and
P. Lindstrom, “Evaluating lossy data compression on climate simulation
data within a large ensemble,” Geoscientific Model Development, vol. 9,
no. 12, pp. 4381–4403, 2016.

[12] A. H. Baker, D. M. Hammerling, and T. L. Turton, “Evaluating Image
Quality Measures to Assess the Impact of Lossy Data Compression
Applied to Climate Simulation Data,” Computer Graphics Forum, 2019.

[13] T. Lu, Q. Liu, X. He, H. Luo, E. Suchyta, J. Choi, N. Podhorszki,
S. Klasky, M. Wolf, T. Liu, and Z. Qiao, “Understanding and modeling
lossy compression schemes on hpc scientific data,” in 2018 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
pp. 348–357, May 2018.

[14] D. Hoang, P. Klacansky, H. Bhatia, P. Bremer, P. Lindstrom, and V. Pas-
cucci, “A study of the trade-off between reducing precision and reducing
resolution for data analysis and visualization,” IEEE Transactions on
Visualization and Computer Graphics, vol. 25, pp. 1193–1203, Jan 2019.

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[16] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, pp. 1097–1105, 2012.

[18] S. Di and F. Cappello, “Fast error-bounded lossy hpc data compression
with sz,” in 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 730–739, IEEE, 2016.

[19] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674–2683, 2014.

[20] P. Lindstrom and M. Isenburg, “Fast and efficient compression of
floating-point data,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 1245–1250, 2006.

[21] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham,
R. Ross, and N. F. Samatova, “Compressing the incompressible with
isabela: In-situ reduction of spatio-temporal data,” in European Confer-
ence on Parallel Processing, pp. 366–379, Springer, 2011.

[22] S. Lakshminarasimhan, N. Shah, S. Ethier, S.-H. Ku, C.-S. Chang,
S. Klasky, R. Latham, R. Ross, and N. F. Samatova, “Isabela for effective
in situ compression of scientific data,” Concurrency and Computation:
Practice and Experience, vol. 25, no. 4, pp. 524–540, 2013.

[23] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel tech-
niques for compression and reduction of scientific data—the univariate
case,” Computing and Visualization in Science, vol. 19, pp. 65–76, Dec
2018.

[24] F. Alted, “Blosc, an extremely fast, multi-threaded, meta-compressor
library,” 2019.

[25] A. Hidayat, “Fastlz, free, open-source, portable real-time compression
library,” URL http://www.fastlz.org, 2019.

[26] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak, “Out-of-core
compression and decompression of large n-dimensional scalar fields,”
Computer Graphics Forum, vol. 22, no. 3, pp. 343–348, 2003.

[27] A. Biswas, S. Dutta, J. Pulido, and J. Ahrens, “In situ data-driven
adaptive sampling for large-scale simulation data summarization,” in
Proceedings of the Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization, ISAV ’18, (New York, NY,
USA), p. 13–18, Association for Computing Machinery, 2018.

[28] N. Elmqvist, P. Dragicevic, and J.-D. Fekete, “Rolling the dice: Multidi-
mensional visual exploration using scatterplot matrix navigation,” IEEE
transactions on visualization and computer graphics, vol. 14, pp. 1141–
8, 11 2008.

[29] D. Murray, Tableau Your Data!: Fast and Easy Visual Analysis with
Tableau Software. Wiley Publishing, 1st ed., 2013.

[30] C. Sievert, plotly for R, 2018.
[31] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven documents,”

IEEE Transactions on Visualization & Computer Graphics, no. 12,
pp. 2301–2309, 2011.

[32] J. Woodring, J. P. Ahrens, J. Patchett, C. Tauxe, and D. H. Rogers,
“High-dimensional scientific data exploration via cinema,” in 2017 IEEE
Workshop on Data Systems for Interactive Analysis (DSIA), pp. 1–5, Oct
2017.

[33] T. Gamblin, M. P. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R.
de Supinski, and W. S. Futral, “The Spack Package Manager: Bringing
order to HPC software chaos,” in Supercomputing 2015 (SC’15), (Austin,
Texas), November 15-20 2015.

[34] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

[35] E. Vaiciukynas, M. Ulicny, S. Pashami, and S. Nowaczyk, “Learn-
ing low-dimensional representation of bivariate histogram data,” IEEE
Transactions on Intelligent Transportation Systems, vol. 19, no. 11,
pp. 3723–3735, 2018.

[36] A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. Lukic, and E. Van Andel,
“Nyx: A massively parallel amr code for computational cosmology,”
Astrophysical Journal, vol. 765, 3 2013.

[37] W. Schroeder, k. Martin, and W. Lorensen, The Visualization Toolkit.
Kitware, 4th ed., 2006.

[38] S. Jin, P. Grosset, C. Biwer, J. Pulido, J. Tian, D. Tao, and J. Ahrens,
“Understanding gpu-based lossy compression for extreme-scale cosmo-
logical simulations,” IEEE International Parallel & Distributed Process-
ing Systems, 05 2020.

[39] D. Daniel, D. Livescu, and J. Ryu, “Reaction analogy based forcing for
incompressible scalar turbulence,” Physical Review Fluids, vol. 3, no. 9,
p. 094602, 2018.

[40] K. Kanov, R. Burns, C. Lalescu, and G. Eyink, “The johns hopkins
turbulence databases: an open simulation laboratory for turbulence
research,” Computing in Science & Engineering, vol. 17, no. 5, pp. 10–
17, 2015.

[41] J. Pulido, D. Livescu, K. Kanov, R. Burns, C. Canada, J. Ahrens,
and B. Hamann, “Remote visual analysis of large turbulence databases
at multiple scales,” Journal of Parallel and Distributed Computing,
vol. 120, pp. 115–126, 2018.

[42] N. Frontiere, C. D. Raskin, and J. M. Owen, “Crksph–a conservative
reproducing kernel smoothed particle hydrodynamics scheme,” Journal
of Computational Physics, vol. 332, pp. 160–209, 2017.

[43] S. Colombi, A. H. Jaffe, D. Novikov, and C. Pichon, “Accurate esti-
mators of power spectra in n-body simulations,” MNRAS, vol. 393, 11
2008.

[44] M. Gittings, R. Weaver, M. Clover, T. Betlach, N. Byrne, R. Coker,
E. Dendy, R. Hueckstaedt, K. New, W. R. Oakes, et al., “The rage
radiation-hydrodynamic code,” Computational Science & Discovery,
vol. 1, no. 1, p. 015005, 2008.

[45] U. Ayachit, A. Bauer, B. Geveci, P. O’Leary, K. Moreland, N. Fabian,
and J. Mauldin, “Paraview catalyst: Enabling in situ data analysis
and visualization,” in Proceedings of the First Workshop on In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization,
ISAV2015, (New York, NY, USA), p. 25–29, Association for Computing
Machinery, 2015.

https://quixdb.github.io/squash-benchmark/
https://quixdb.github.io/squash-benchmark/
https://github.com/CODARcode/libpressio/
https://github.com/CODARcode/libpressio/
http://www.deeplearningbook.org

[46] J. Patchett and G. Gisler, “Deep water impact ensemble data set,”
Technical Report LA-UR-17-21595, Los Alamos National Laboratory,
2017.

[47] K. Wunnemann and R. Weiss, “The meteorite impact-induced tsunami
hazard,” The Royal Society, 2015.

[48] A. Mohan, D. Daniel, M. Chertkov, and D. Livescu, “Compressed
convolutional lstm: An efficient deep learning framework to model high
fidelity 3d turbulence,” arXiv preprint arXiv:1903.00033, 2019.

[49] A. Mohan, D. Tretiak, M. Chertkov, and D. Livescu, “Spatio-temporal
deep learning models of 3d turbulence with physics informed diagnos-
tics,” Journal of Turbulence, p. in press, 2020.

[50] P. Lindstrom, “Error distributions of lossy floating-point compressors,”
in Joint Statistical Meetings, vol. 2017, pp. 2574–2589, 2017.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We ran the HACC CBench experiments on the CORI supercomputer
at NERSC using C++ and MPI. The analysis runs were done on the
Darwin cluster at Los Alamos National Lab since many of the
analysis code is proprietary.

TheHACC dataset is public as well as the original asteroid impact
dataset but not the turbulence dataset.

ARTIFACT AVAILABILITY
Software Artifact Availability: All author-created software arti-

facts are maintained in a public repository under an OSI-approved
license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: There are no author-created data
artifacts.

Proprietary Artifacts: There are associated proprietary artifacts
that are not created by the authors. Some author-created artifacts
are proprietary.

Author-Created or Modified Artifacts:

Persistent ID:

https://github.com/lanl/VizAly-Foresight↪→

Artifact name: Source code repository

Persistent ID: http://doi.org/10.5281/zenodo.3875675
Artifact name: Zenodo DOI of the latest stable release

Persistent ID: http://doi.org/10.5281/zenodo.3875684
Artifact name: DOI of the current dev branch

Persistent ID:

https://lanl.github.io/VizAly-Foresight/↪→

Artifact name: Cinema Explorer database of results

Persistent ID: http://dx.doi.org/10.21227/zg3m-8j73
Artifact name: HACC Dataset

Persistent ID:

https://oceans11.lanl.gov/deepwaterimpact/↪→

Artifact name: Deep Water Impact Asteroid dataset

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Cori at NERSC, Darwin at LANL

Operating systems and versions: The OS on these supercomputers

Compilers and versions: C++ 14

URL to output from scripts that gathers execution environment
information.
https://github.com/lanl/VizAly-Foresight/tree/v1.3.1 ⌋

/scripts↪→

ARTIFACT EVALUATION
Verification and validation studies: We ran analysis on three dif-

ferent kinds of simulation/data. The results for HACC were vali-
dated by the HACC team at Argonne national lab. The other results
were validated by scientists at Los Alamos National Lab.

Accuracy and precision of timings: Timing is not what we are
measuring in the paper. What we are measuring is compression
quality and impact on analysis. The compression algorithms are
deterministic; running them several times should give the same
compression ratio. We did test the validity of the framework by
using BLOSC which is lossless and make sure that the results from
BLOSC match the original uncompressed data. The only metric
that could vary on each run is the throughput and this is averaged
over the many ranks that these compressors are running.

Used manufactured solutions or spectral properties: Not applicable

Quantified the sensitivity of results to initial conditions and/or
parameters of the computational environment: Not applicable

Controls, statistics, or other steps taken to make the measurements
and analyses robust to variability and unknowns in the system. Not
applicable

	Introduction
	Previous Work
	Data-Reduction Evaluation Frameworks
	Data-Reduction Evaluation
	Data-Reduction Methods
	Autoencoders
	Data Compression Algorithms
	Sampling Methods

	Visualization

	Architecture
	DRAW
	Compression Bench (CBench)
	Cinema Visualization

	Analysis and Evaluation
	Simulation Use Cases
	CFDNS
	HACC
	xRage

	Evaluation Results
	CFDNS
	HACC
	xRage

	Conclusion and Future Work
	References

